问耕 只想说 凹非寺 量子位 荣誉出品 | 微信公众号 QbitAI TensorFlow 2.0总算来啦! 今日零晨,这一全世界客户数最多的深度神经网络架构,宣布释放了2.0版本号。 Google深度神经网络生物学家、Keras创作者François Chollet激情的表明:“TensorFlow 2.0是一个来自未来的设备在线学习平台,它更改了一切”。 许多 网民表明,TensorFlow 2.0比PyTorch更强用,早已提前准备全方位转为这一新升級的深度神经网络架构了。 更实用的TF2.0 虽然是排名第一的深度神经网络架构,但TensorFlow的缺陷也一直比较突出。官方网对于此事也心照不宣,因而在今早公布的blog中写到: ”TensorFlow 2.0由客户小区促进,告知大家她们要想一个便于应用、灵便又强劲的服务平台,而且适用布署到任何地方。“ 那麼TF2.0有哪些改善? 一、Keras与TensorFlow密不可分集成化,默认设置eager execution,实行Pythonic涵数。官方网表明,对开发人员而言,TensorFlow 2.0用起來跟Python类似;针对学者而言,新架构也在低等API层面开展了关键资金投入。 二、为了更好地在各种各样服务平台上运作,SavedModel格式文件开展了规范化。 三、对于性能卓越训炼情景,能够应用Distribution Strategy API开展遍布训炼,且只需开展小量编码改动就能得到优异的特性。适用Keras Model.fit、自定训炼循环系统、多GPU这些。 四、TensorFlow 2.0提升了在GPU上的特性主要表现。以ResNet-50和BERT为例子,只必须两行编码,混和精密度应用Volta和Turing GPU,训炼主要表现最大能够提高3倍。 五、增加TensorFlow Datasets,为包括很多基本数据类型的大中型数据出示了通信接口。 六、尽管保存了传统式的根据Session的程序编写实体模型,但官方网如今提议应用eager execution开展基本的Python开发设计。tf.function装饰器能够把代码转换成能够远程控制实行、实例化、性能优化的图。在Autograph的协助下,可以把基本的Python控制流立即转成TensorFlow控制流。 七、官方网出示了TensorFlow 1.x升級2.0的转移手册,TF2.0还有一个全自动变换的脚本制作。 八、TensorFlow 2.0出示了实用的API,可以灵便迅速的完成新念头。实体模型的训炼和serving也早已无缝拼接集成化在系统架构中。 大量有关TensorFlow 2.0的信息内容,能够> 浏览官方网站: https://www.tensorflow.org/ GitHub: https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0 “更改一切,完爆PyTorch” TensorFlow 2.0公布以后,引起了普遍的探讨和关心。 Google深度神经网络生物学家、Keras创作者François Chollet激情的表明,TensorFlow 2.0是一个来自未来的设备在线学习平台,它更改了一切。 如今GitHub上排名第一的NLP设备课程学习practicalAI的创作者、美国苹果公司AI研究者Goku Mohandas在twiter上说,她们已经从PyTorch转为TensorFlow 2.0。 客户Francois Piednoel留言板留言表明,他早已感受了TF2.0一整周,他得出一样的结果:TF2.0如今早已完爆PyTorch一手了。 深度神经网络科学研究和教育工作者、fast.ai创办人Jeremy Howard也夸赞TF2.0的公布是”令人激动的一步,与TensorFlow一代对比是一个极大的飞越“。 自然,对于具体如何,还得大伙儿亲身感受了。 为了更好地迎来新版本的公布,TensorFlow精英团队的Josh Gordon,还梳理了一份教学资源。 1、Deep Learning with Python TF2.0根据Keras。假如你是一个深度神经网络初学者,最好是从这本书下手。自然这本书里的编码必须改一下,但比较简单: import keras -> from tensorflow import keras 这本书详细地址在这里: https://github.com/fchollet/deep-learning-with-python-notebooks 2、Hands-on ML第二版 这本书非常棒,能够陪你更深层次TF2.0,还记得需看第二版。 这本书详细地址在这里: https://github.com/ageron/handson-ml2 3、AppliedML 假如你喜爱播放视频,这有一个深层次scikit-learn和深度学习的內容,完全免费。这套课程内容全名是AppliedML,YouTube上的详细地址在这里: https://www.youtube.com/channel/UCMEXgDffQy6nS2a74Gby8ZA/videos 4、官方网实例教程 最终,推荐最新的TF2.0基础教程。详细地址: tensorflow.org/tutorials/ 安裝TF2.0 TensorFlow 2.0适用以下的64位电脑操作系统:
下载安装包:应用Python的pip安装,版本号必须19.0以后。 自然……不安裝也可以用,由于还有一个武器: Google Colab。 好啦,最终祝大家节日愉快! — 完 — 真挚招骋 量子位已经征募编写/新闻记者,工作中地址在中关村。希望有才华、有激情的同学们加入团队!有关关键点,请在量子位微信公众号(QbitAI)会话页面,回应“招骋”两字。 量子位 QbitAI · 今日头条号签订创作者 վ'ᴗ' ի 跟踪AI技术性和商品最新消息 |